Past Recording
ShareStar
Reinforcement Learning for Bioprocess Optimization
Wednesday May 20 2020 14:00 GMT
Please to join the live chat.
Reinforcement Learning for Bioprocess Optimization
Why This Is Interesting

Bioprocesses have received great attention from the scientific community as an alternative to fossil-based products by microorganisms-synthesised counterparts. However, bioprocesses are generally operated at unsteady-state conditions and are stochastic from a macro-scale perspective, making their optimisation a challenging task. Furthermore, as biological systems are highly complex, plant-model mismatch is usually present. To address the aforementioned challenges, in this work, we propose a reinforcement learning based online optimisation strategy. We first use reinforcement learning to learn an optimal policy given a preliminary process model. This means that we compute diverse trajectories and feed them into a recurrent neural network, resulting in a policy network which takes the states as input and gives the next optimal control action as output. Through this procedure, we are able to capture the previously believed behaviour of the biosystem. Subsequently, we adopted this network as an initial policy for the “real” system (the plant) and apply a batch-to-batch reinforcement learning strategy to update the network’s accuracy. This is computed by using a more complex process model (representing the real plant) embedded with adequate stochasticity to account for the perturbations in a real dynamic bioprocess. We demonstrate the effectiveness and advantages of the proposed approach in a case study by computing the optimal policy in a realistic number of batch runs.

Discussion Points

How RL helps to improve experiments

Takeaways

How RL helps to improve experiments

Time of Recording: Wednesday May 20 2020 14:00 GMT