[FineGym] A Dataset for Fine-grained Video Action Understanding and Our Experience of Building A Fine-grained Dataset

Time: Thursday 14-May-2020 23:30 (This is a past event.)



Motivation / Abstract
On public benchmarks, current action recognition techniques have achieved great success. However, when used in real-world applications, e.g. sport analysis, which requires the capability of parsing an activity into phases and differentiating between subtly different actions, their performances remain far from being satisfactory. To take action recognition to a new level, we develop FineGym, a new dataset built on top of gymnastic videos. Compared to existing action recognition datasets, FineGym is distinguished in richness, quality, and diversity. In particular, it provides temporal annotations at both action and sub-action levels with a three-level semantic hierarchy. For example, a "balance beam" event will be annotated as a sequence of elementary sub-actions derived from five sets: "leap-jump-hop", "beam-turns", "flight-salto", "flight-handspring", and "dismount", where the sub-action in each set will be further annotated with finely defined class labels. This new level of granularity presents significant challenges for action recognition, e.g. how to parse the temporal structures from a coherent action, and how to distinguish between subtly different action classes. We systematically investigate representative methods on this dataset and obtain a number of interesting findings. We hope this dataset could advance research towards action understanding.
Stream Categories:
 SpotlightAuthor SpeakingComputer Vision